(New page: Suppose we have a signal: :<math>e^{-2(t-1)}u(t-1)\,</math> The formula of Fourier Transform is: :<math>X(w) = \int_{-\infty}^{ \infty} x(t)e^{-jwt}dt\,</math> Substituting: :<math>X(...)
 
Line 18: Line 18:
  
 
Integrating yields:
 
Integrating yields:
 +
 +
:<math>X(w) = {\left. -\frac{e^{2-(2+jw)t}}{2+jw} \right]_{1}^{\infty}}\,</math>
 +
 +
:<math>X(w) = 0 - -\frac{e^{2-(2+jw)}}{2+jw} \,</math>
 +
 +
:<math>X(w) = \frac{e^{2-2-jw}}{2+jw} \,</math>
 +
 +
:<math>X(w) = \frac{e^{-jw}}{2+jw} \,</math>

Revision as of 14:57, 7 October 2008

Suppose we have a signal:

$ e^{-2(t-1)}u(t-1)\, $

The formula of Fourier Transform is:

$ X(w) = \int_{-\infty}^{ \infty} x(t)e^{-jwt}dt\, $

Substituting:

$ X(w) = \int_{-\infty}^{ \infty} e^{-2(t-1)}u(t-1)e^{-jwt}dt\, $

From the step function, the range becomes 1 to $ \infty $, so the equation becomes:

$ X(w) = \int_{1}^{ \infty} e^{-2(t-1)}e^{-jwt}dt\, $
$ X(w) = \int_{1}^{ \infty} e^{2-(2+jw)t}dt\, $

Integrating yields:

$ X(w) = {\left. -\frac{e^{2-(2+jw)t}}{2+jw} \right]_{1}^{\infty}}\, $
$ X(w) = 0 - -\frac{e^{2-(2+jw)}}{2+jw} \, $
$ X(w) = \frac{e^{2-2-jw}}{2+jw} \, $
$ X(w) = \frac{e^{-jw}}{2+jw} \, $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett