(The Fourier Transform)
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
== The Signal ==
 
== The Signal ==
  
  
<math>(t e^{-4t} \sin{6 \pi t}) u(t)</math>
+
<math>(t e^{-4t} \sin{6 \pi t}) u(t) \ </math>
  
  
Line 32: Line 40:
  
  
A faster/easier way to solve this problem would be to use the Multiplication Property
+
----
 +
==Comments/questions==
 +
*A faster/easier way to solve this problem would be to use the Multiplication Property
 +
 
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:27, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


The Signal

$ (t e^{-4t} \sin{6 \pi t}) u(t) \ $


The Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt $


$ X(\omega)=\int_{-\infty}^{\infty} (te^{-4t}\sin{6\pi t})u(t) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} (te^{-4t}\sin{6\pi t}) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} (te^{-4t})(\frac {e^{j 6 \pi t} - e^{-j 6 \pi t}}{2 j}) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt $


$ X(\omega)=\int_{0}^{\infty} \frac {t e^{t(j(6 \pi - \omega)-4)}}{2 j} - \frac {t e^{t(-j(6 \pi + \omega)-4)}}{2 j}dt $


$ X(\omega)= \frac{(t (j(6 \pi - \omega)-4) - 1) e^{t(j(6 \pi - \omega)-4)}}{2 j (j(6 \pi - \omega)-4)} - \frac{(t (-j(6 \pi + \omega)-4) - 1) e^{t(-j(6 \pi + \omega)-4)}}{2 j (-j(6 \pi + \omega)-4)}\bigg]_0^\infty $


$ X(\omega)= \frac{-1}{2 j (j(6 \pi - \omega)-4)} + \frac{1}{2 j (-j(6 \pi + \omega)-4)} $



Comments/questions

  • A faster/easier way to solve this problem would be to use the Multiplication Property

Back to Practice Problems on CT Fourier transform

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva