Line 14: | Line 14: | ||
− | + | <math>X(\omega)=\int_{0}^{\infty} (te^{-4t}\sin{6\pi t}) e^{-j\omega t}dt</math> | |
Line 20: | Line 20: | ||
− | <math>X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt</math | + | <math>X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt</math> |
<math>X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt</math> | <math>X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt</math> |
Revision as of 14:36, 7 October 2008
The Signal
$ (t e^{-4t} \sin{6 \pi t}) u(t) $
The Fourier Transform
$ X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt $
$ X(\omega)=\int_{-\infty}^{\infty} (te^{-4t}\sin{6\pi t})u(t) e^{-j\omega t}dt $
$ X(\omega)=\int_{0}^{\infty} (te^{-4t}\sin{6\pi t}) e^{-j\omega t}dt $
$ X(\omega)=\int_{0}^{\infty} (te^{-4t})(\frac {e^{j 6 \pi t} - e^{-j 6 \pi t}}{2 j}) e^{-j\omega t}dt $
$ X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt $
$ X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt $