Line 15: | Line 15: | ||
<math>X(\omega)=\int_{0}^{\infty} (te^{-4t}\sin{6\pi t}) e^{-j\omega t}dt</math> | <math>X(\omega)=\int_{0}^{\infty} (te^{-4t}\sin{6\pi t}) e^{-j\omega t}dt</math> | ||
+ | |||
+ | |||
+ | <math>X(\omega)=\int_{0}^{\infty} (te^{-4t})(\frac {e^{j 6 \pi t} - e^{-j 6 \pi t}}{2 j}) e^{-j\omega t}dt</math> |
Revision as of 14:21, 7 October 2008
The Signal
$ (t e^{-4t} \sin{6 \pi t}) u(t) $
The Fourier Transform
$ X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt $
$ X(\omega)=\int_{-\infty}^{\infty} (te^{-4t}\sin{6\pi t})u(t) e^{-j\omega t}dt $
$ X(\omega)=\int_{0}^{\infty} (te^{-4t}\sin{6\pi t}) e^{-j\omega t}dt $
$ X(\omega)=\int_{0}^{\infty} (te^{-4t})(\frac {e^{j 6 \pi t} - e^{-j 6 \pi t}}{2 j}) e^{-j\omega t}dt $