(New page: placeholder)
 
Line 1: Line 1:
placeholder
+
Specify a signal x(t) and compute its Fourier transform using the integral formula. (Make sure your signal is not trivial to transform; it should be hard enough to be on a test).
 +
 
 +
Defining x(t):
 +
 
 +
<math> x(t) = te^{-4t}u(t-3) </math>
 +
 
 +
By the integral formula:
 +
 
 +
<math> \mathcal{X}(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\,</math>
 +
 
 +
Therefore:
 +
 
 +
<math> \mathcal{X}(\omega) = \int_{-\infty}^{\infty}te^{-4t}u(t-3)e^{-j\omega t}\,dt\,</math>
 +
 
 +
<math> \mathcal{X}(\omega) = \int_{3}^{\infty}te^{-4t}e^{-j\omega t}\,dt\,</math> (maybe remove)
 +
 
 +
<math> \mathcal{X}(\omega) = \int_{3}^{\infty}te^{-t(4+ j\omega)}\,dt\,</math>
 +
 
 +
Integrating by parts
 +
 
 +
<math> \int UdV=UV - \int VdU </math>
 +
 
 +
Where
 +
<math> U=t; dU=1; V= \frac{-1}{4+j \omega} e^{-t(4+j \omega)}; dV= e^{-t(4+j \omega)} </math>

Revision as of 13:31, 7 October 2008

Specify a signal x(t) and compute its Fourier transform using the integral formula. (Make sure your signal is not trivial to transform; it should be hard enough to be on a test).

Defining x(t):

$ x(t) = te^{-4t}u(t-3) $

By the integral formula:

$ \mathcal{X}(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $

Therefore:

$ \mathcal{X}(\omega) = \int_{-\infty}^{\infty}te^{-4t}u(t-3)e^{-j\omega t}\,dt\, $

$ \mathcal{X}(\omega) = \int_{3}^{\infty}te^{-4t}e^{-j\omega t}\,dt\, $ (maybe remove)

$ \mathcal{X}(\omega) = \int_{3}^{\infty}te^{-t(4+ j\omega)}\,dt\, $

Integrating by parts

$ \int UdV=UV - \int VdU $

Where $ U=t; dU=1; V= \frac{-1}{4+j \omega} e^{-t(4+j \omega)}; dV= e^{-t(4+j \omega)} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett