Line 6: Line 6:
  
 
== Answer ==
 
== Answer ==
 +
 +
<math>\,x(t)=\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \,</math>

Revision as of 19:45, 5 October 2008

Compute the inverse Fourier transform of the following signal using the integral formula:

$ \,\mathcal{X}(\omega)=e^{-|\omega +3|} + e^{j(\omega + 5)}\delta(\omega - \pi)\, $


Answer

$ \,x(t)=\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett