Line 13: | Line 13: | ||
<math>\,\mathcal{X}(\omega)=\int_{1}^{+\infty}e^{-5t}e^{-15}e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}\delta(t-\frac{\pi}{2})e^{-j(\omega +\pi)t}\,dt\,</math> | <math>\,\mathcal{X}(\omega)=\int_{1}^{+\infty}e^{-5t}e^{-15}e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}\delta(t-\frac{\pi}{2})e^{-j(\omega +\pi)t}\,dt\,</math> | ||
− | <math>\,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{- | + | <math>\,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{-(j\omega +5)t}\,dt + e^{-j(\omega +\pi)\frac{\pi}{2}}\,</math> |
Revision as of 17:59, 5 October 2008
Compute the Fourier transform of the following CT signal using the integral formula:
$ \,x(t)=e^{-5(t+3)}u(t-1) + e^{-j\pi t}\delta(t-\frac{\pi}{2})\, $
Answer
$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}\,dt\, $
$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}e^{-5(t+3)}u(t-1)e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}e^{-j\pi t}\delta(t-\frac{\pi}{2})e^{-j\omega t}\,dt\, $
$ \,\mathcal{X}(\omega)=\int_{1}^{+\infty}e^{-5t}e^{-15}e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}\delta(t-\frac{\pi}{2})e^{-j(\omega +\pi)t}\,dt\, $
$ \,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{-(j\omega +5)t}\,dt + e^{-j(\omega +\pi)\frac{\pi}{2}}\, $