Line 13: Line 13:
 
<math>\,\mathcal{X}(\omega)=\int_{1}^{+\infty}e^{-5t}e^{-15}e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}\delta(t-\frac{\pi}{2})e^{-j(\omega +\pi)t}\,dt\,</math>
 
<math>\,\mathcal{X}(\omega)=\int_{1}^{+\infty}e^{-5t}e^{-15}e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}\delta(t-\frac{\pi}{2})e^{-j(\omega +\pi)t}\,dt\,</math>
  
<math>\,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{-j(5+j\omega)t}\,dt + e^{-j(\omega +\pi)\frac{\pi}{2}}\,</math>
+
<math>\,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{-(j\omega +5)t}\,dt + e^{-j(\omega +\pi)\frac{\pi}{2}}\,</math>

Revision as of 17:59, 5 October 2008

Compute the Fourier transform of the following CT signal using the integral formula:

$ \,x(t)=e^{-5(t+3)}u(t-1) + e^{-j\pi t}\delta(t-\frac{\pi}{2})\, $


Answer

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}e^{-5(t+3)}u(t-1)e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}e^{-j\pi t}\delta(t-\frac{\pi}{2})e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{1}^{+\infty}e^{-5t}e^{-15}e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}\delta(t-\frac{\pi}{2})e^{-j(\omega +\pi)t}\,dt\, $

$ \,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{-(j\omega +5)t}\,dt + e^{-j(\omega +\pi)\frac{\pi}{2}}\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang