Line 6: Line 6:
  
 
== Answer ==
 
== Answer ==
 +
 +
<math>\,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\,</math>

Revision as of 17:49, 5 October 2008

Compute the Fourier transform of the following CT signal using the integral formula:

$ \,x(t)=e^{-5(t+3)}u(t-1) + e^{-j\pi t}\delta(t-\frac{\pi}{2})\, $


Answer

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett