Line 16: Line 16:
  
 
<math>=\frac{2-3j}{2}\int_{-\infty}^{\infty}\delta(\omega - 4\pi)e^{j\omega t}d\omega + \frac{2+3j}{2}\int_{-\infty}^{\infty}\delta(\omega + 4\pi)e^{j\omega t}d\omega </math>
 
<math>=\frac{2-3j}{2}\int_{-\infty}^{\infty}\delta(\omega - 4\pi)e^{j\omega t}d\omega + \frac{2+3j}{2}\int_{-\infty}^{\infty}\delta(\omega + 4\pi)e^{j\omega t}d\omega </math>
 +
 +
<math>=\frac{2-3j}{2}e^{-j4\pi t} + \frac{2+3j}{2}e^{j4\pi t}</math>

Revision as of 09:25, 3 October 2008

Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega $



$ X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j) $



$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}[\pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)]e^{j\omega t}d\omega $

$ =\frac{2-3j}{2}\int_{-\infty}^{\infty}\delta(\omega - 4\pi)e^{j\omega t}d\omega + \frac{2+3j}{2}\int_{-\infty}^{\infty}\delta(\omega + 4\pi)e^{j\omega t}d\omega $

$ =\frac{2-3j}{2}e^{-j4\pi t} + \frac{2+3j}{2}e^{j4\pi t} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva