(New page: ==Inverse Fourier Transform==)
 
Line 1: Line 1:
 
==Inverse Fourier Transform==
 
==Inverse Fourier Transform==
 +
 +
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega</math>
 +
 +
<math>X(\omega} = \dirac{\omega - 4\pi}</math>

Revision as of 09:17, 3 October 2008

Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega $

$ X(\omega} = \dirac{\omega - 4\pi} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett