Line 1: Line 1:
==<math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-jwt}dt</math>==
+
==<math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>==
  
 
<math>x(t)=t^2 u(t)</math>
 
<math>x(t)=t^2 u(t)</math>
  
 
<math>X(t)</math>
 
<math>X(t)</math>

Revision as of 08:34, 3 October 2008

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=t^2 u(t) $

$ X(t) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett