Line 7: Line 7:
 
3. <math> \ a_k = 0 </math> for <math> \left \vert k \right \vert > 1 </math>.
 
3. <math> \ a_k = 0 </math> for <math> \left \vert k \right \vert > 1 </math>.
  
4. <math> \frac{1}{2}\int_{0}^{2} \left \vert x(t) \right \vert ^2 \, dt = 3.2 </math>.
+
4. <math> \frac{1}{2}\int_{0}^{2} \left \vert x(t) \right \vert ^2 \, dt = 1 </math>.
  
 
Specify two different signals that satisfy these conditions.
 
Specify two different signals that satisfy these conditions.
Line 14: Line 14:
  
 
<math>
 
<math>
\ x(t) = x(-t) = t^2
+
\ x(t) = sqrt(2)sin(2\pit)
 
</math>
 
</math>

Revision as of 17:23, 26 September 2008

Suppose we are given the following information about a signal x(t):

1. x(t) is real and even.

2. x(t) is periodic with period T = 4 and Fourier coefficients $ \ a_k $.

3. $ \ a_k = 0 $ for $ \left \vert k \right \vert > 1 $.

4. $ \frac{1}{2}\int_{0}^{2} \left \vert x(t) \right \vert ^2 \, dt = 1 $.

Specify two different signals that satisfy these conditions.

One signal that would satisfy these coniditions is the input signal

$ \ x(t) = sqrt(2)sin(2\pit) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett