m |
|||
Line 8: | Line 8: | ||
<math> \ a_k = 0 </math> for <math> \left \vert k \right \vert > 1 </math>. | <math> \ a_k = 0 </math> for <math> \left \vert k \right \vert > 1 </math>. | ||
− | 4. <math> | + | 4. <math> \ a_k = \frac{1}{T}\int_{0}^{T} y(t)e^{-jk\omega_0t}\, dt </math> |
Revision as of 17:05, 26 September 2008
Suppose we are given the following information about a signal x(t):
1. x(t) is real and even.
2. x(t) is periodic with period T = 4 and Fourier coefficients $ \ a_k $.
3. $ \ a_k = 0 $ for $ \left \vert k \right \vert > 1 $.
4. $ \ a_k = \frac{1}{T}\int_{0}^{T} y(t)e^{-jk\omega_0t}\, dt $