m
Line 8: Line 8:
 
<math> \ a_k = 0 </math> for <math> \left \vert k \right \vert > 1 </math>.
 
<math> \ a_k = 0 </math> for <math> \left \vert k \right \vert > 1 </math>.
  
4. <math> stuff2 </math>.
+
4. <math> \ a_k = \frac{1}{T}\int_{0}^{T} y(t)e^{-jk\omega_0t}\, dt </math>

Revision as of 17:05, 26 September 2008

Suppose we are given the following information about a signal x(t):

1. x(t) is real and even.

2. x(t) is periodic with period T = 4 and Fourier coefficients $ \ a_k $.

3. $ \ a_k = 0 $ for $ \left \vert k \right \vert > 1 $.

4. $ \ a_k = \frac{1}{T}\int_{0}^{T} y(t)e^{-jk\omega_0t}\, dt $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics