Line 10: Line 10:
  
 
<math>H(j\omega) = \int_{-\infty}^{\infty}3\delta(t-1)+\delta(t+3)-\delta(t)\,dt\!</math>
 
<math>H(j\omega) = \int_{-\infty}^{\infty}3\delta(t-1)+\delta(t+3)-\delta(t)\,dt\!</math>
 +
 +
<math>H(s) = 3e^{-s} + e^{3s} - 1\!</math>

Revision as of 16:40, 26 September 2008

CT LTI signal:

$ y(t) = 3x(t-1)+x(t+3)-x(t)\! $


Part A

$ h(t) = 3\delta(t-1)+\delta(t+3)-\delta(t)\! $

$ H(j\omega) = \int_{-\infty}^{\infty}3\delta(t-1)+\delta(t+3)-\delta(t)\,dt\! $

$ H(s) = 3e^{-s} + e^{3s} - 1\! $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva