Line 3: Line 3:
 
<math>y(t) = 3x(t-1)+x(t+3)-x(t)\!</math>
 
<math>y(t) = 3x(t-1)+x(t+3)-x(t)\!</math>
  
'''Part A'''
+
 
 +
== Part A ==
 +
 
  
 
<math>h(t) = 3\delta(t-1)+\delta(t+3)-\delta(t)\!</math>
 
<math>h(t) = 3\delta(t-1)+\delta(t+3)-\delta(t)\!</math>
  
 
<math>H(j\omega) = \int_{-\infty}^{\infty}3\delta(t-1)+\delta(t+3)-\delta(t)\,dt\!</math>
 
<math>H(j\omega) = \int_{-\infty}^{\infty}3\delta(t-1)+\delta(t+3)-\delta(t)\,dt\!</math>
 
'''Part B'''
 

Revision as of 16:38, 26 September 2008

CT LTI signal:

$ y(t) = 3x(t-1)+x(t+3)-x(t)\! $


Part A

$ h(t) = 3\delta(t-1)+\delta(t+3)-\delta(t)\! $

$ H(j\omega) = \int_{-\infty}^{\infty}3\delta(t-1)+\delta(t+3)-\delta(t)\,dt\! $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin