(New page: ==CT LTI signal: == <math>y(t) = 3x(t-1)+x(t+3)-x(t)\!</math> '''Part A''' <math>h(t) = 3\delta(t-1)+\delta(t+3)-\delta(t)\!</math> <math>H(j\omega) = \int_{-\infty}^{\infty}3\delta(t...)
 
Line 1: Line 1:
 
 
==CT LTI signal: ==
 
==CT LTI signal: ==
  
Line 8: Line 7:
 
<math>h(t) = 3\delta(t-1)+\delta(t+3)-\delta(t)\!</math>
 
<math>h(t) = 3\delta(t-1)+\delta(t+3)-\delta(t)\!</math>
  
<math>H(j\omega) = \int_{-\infty}^{\infty}3\delta(t-1)+\delta(t+3)-\delta(t)\!</math>
+
<math>H(j\omega) = \int_{-\infty}^{\infty}3\delta(t-1)+\delta(t+3)-\delta(t)\,dt\!</math>
  
 
'''Part B'''
 
'''Part B'''

Revision as of 16:38, 26 September 2008

CT LTI signal:

$ y(t) = 3x(t-1)+x(t+3)-x(t)\! $

Part A

$ h(t) = 3\delta(t-1)+\delta(t+3)-\delta(t)\! $

$ H(j\omega) = \int_{-\infty}^{\infty}3\delta(t-1)+\delta(t+3)-\delta(t)\,dt\! $

Part B

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett