(New page: ==Guess the Periodic Signal== ==Answer==) |
(→Guess the Periodic Signal) |
||
Line 1: | Line 1: | ||
==Guess the Periodic Signal== | ==Guess the Periodic Signal== | ||
+ | Find a DT signal that satisfies these properties: | ||
+ | 1. period N=2 | ||
+ | |||
+ | 2. <math>\sum_{n=0}^3 x[n] = 2</math> | ||
+ | |||
+ | 3. <math>a_1=3 \!</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | 1. a period of 2 gives us | ||
+ | |||
+ | <math>x[n] = \frac{1}{2}\sum_0^{N-1} a_ke^{jk\pi n}</math> | ||
+ | |||
+ | 2. <math>a_0 = 1 \!</math> | ||
+ | |||
+ | 3. <math>a_1 = 3 \!</math> | ||
+ | |||
+ | Giving us: | ||
+ | |||
+ | <math>x[n] = 1 + 3e^{j\pi n} \!</math> | ||
==Answer== | ==Answer== |
Revision as of 16:39, 26 September 2008
Guess the Periodic Signal
Find a DT signal that satisfies these properties:
1. period N=2
2. $ \sum_{n=0}^3 x[n] = 2 $
3. $ a_1=3 \! $
Solution
1. a period of 2 gives us
$ x[n] = \frac{1}{2}\sum_0^{N-1} a_ke^{jk\pi n} $
2. $ a_0 = 1 \! $
3. $ a_1 = 3 \! $
Giving us:
$ x[n] = 1 + 3e^{j\pi n} \! $