(Problem 1: Ceiling of an Exponential)
Line 4: Line 4:
 
== Problem 1: Ceiling of an Exponential ==
 
== Problem 1: Ceiling of an Exponential ==
 
<math>X</math> is an exponential random variable with paramter <math>\lambda</math>. <math>Y = \mathrm{ceil}(X)</math>, where the ceiling function <math>\mathrm{ceil}(\cdot)</math> rounds its argument up to the closest integer, i.e.:
 
<math>X</math> is an exponential random variable with paramter <math>\lambda</math>. <math>Y = \mathrm{ceil}(X)</math>, where the ceiling function <math>\mathrm{ceil}(\cdot)</math> rounds its argument up to the closest integer, i.e.:
 +
 +
        <math>\mathrm{ceil}(a)</math> = <math>a</math> if <math>a</math> is an integer
 +
              = the smallest integer bigger than <math>a</math> if <math>a</math> is not an integer
  
 
What is the PMF of <math>Y</math>? Is it one of the common random variables?  (Hint: for all <math>k</math>, find the quantity <math>P(Y > k)</math>. Then find the PMF)
 
What is the PMF of <math>Y</math>? Is it one of the common random variables?  (Hint: for all <math>k</math>, find the quantity <math>P(Y > k)</math>. Then find the PMF)

Revision as of 07:18, 8 October 2008

Instructions

Homework 6 can be downloaded here on the ECE 302 course website.

Problem 1: Ceiling of an Exponential

$ X $ is an exponential random variable with paramter $ \lambda $. $ Y = \mathrm{ceil}(X) $, where the ceiling function $ \mathrm{ceil}(\cdot) $ rounds its argument up to the closest integer, i.e.:

        $ \mathrm{ceil}(a) $ = $ a $ if $ a $ is an integer
              = the smallest integer bigger than $ a $ if $ a $ is not an integer

What is the PMF of $ Y $? Is it one of the common random variables? (Hint: for all $ k $, find the quantity $ P(Y > k) $. Then find the PMF)

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009