Line 13: Line 13:
 
<math>x[n]=-\frac{1}{4}e^{j3\pi n}-\frac{1}{4}e^{-j3\pi n}+\frac{1}{j2}e^{3\pi n}-\frac{1}{j2}e^{-j3\pi n}</math>
 
<math>x[n]=-\frac{1}{4}e^{j3\pi n}-\frac{1}{4}e^{-j3\pi n}+\frac{1}{j2}e^{3\pi n}-\frac{1}{j2}e^{-j3\pi n}</math>
  
<math>a_{-1} = -\frac{1}{4}-j\frac{1}{2}</math>,     <math>a_{0} = 0\!</math>,    <math>a_{1} = -\frac{1}{4}+j\frac{1}{2}</math>.
+
<math>a_{-1} = -\frac{1}{4}-j\frac{1}{2}</math>,   \tab <math>a_{0} = 0\!</math>,    <math>a_{1} = -\frac{1}{4}+j\frac{1}{2}</math>.

Revision as of 15:40, 26 September 2008

Periodic DT Signal

$ x[n]=-\frac{1}{2}cos(3\pi n)+sin(3\pi n)\! $.


Fourier Series Coefficients

$ x[n]=-\frac{1}{2}[\frac{e^{j3\pi n}+e^{-j3\pi n}}{2}]+\frac{e^{j3\pi n}-e^{-3\pi n}}{j2} $


$ x[n]=-\frac{1}{4}e^{j3\pi n}-\frac{1}{4}e^{-j3\pi n}+\frac{1}{j2}e^{3\pi n}-\frac{1}{j2}e^{-j3\pi n} $

$ a_{-1} = -\frac{1}{4}-j\frac{1}{2} $, \tab $ a_{0} = 0\! $, $ a_{1} = -\frac{1}{4}+j\frac{1}{2} $.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood