Line 1: Line 1:
<math>x[n]=-0.5cos(3\pin)+sin(3\pin)\!</math>.
+
<math>x[n]=-0.5cos(3\pi n)+sin(3\pi n)\!</math>.
  
  
<math>x[n]=-\frac{1}{2}[\frac{e^{j3\pin}+e^{-j3\pin}}{2}]+\frac{e^{j3\pin}-e^{-3\pin}}{j2}</math>
+
<math>x[n]=-\frac{1}{2}[\frac{e^{j3\pi n}+e^{-j3\pi n}}{2}]+\frac{e^{j3\pi n}-e^{-3\pi n}}{j2}</math>
  
  
<math>x[n]=-\frac{1}{4}e^{j3\pin}-\frac{1}{4}e^{-j3\pin}+\frac{1}{j2}e^{3\pin}-\frac{1}{j2}e^{-j3\pin}</math>
+
<math>x[n]=-\frac{1}{4}e^{j3\pi n}-\frac{1}{4}e^{-j3\pi n}+\frac{1}{j2}e^{3\pi n}-\frac{1}{j2}e^{-j3\pi n}</math>

Revision as of 15:30, 26 September 2008

$ x[n]=-0.5cos(3\pi n)+sin(3\pi n)\! $.


$ x[n]=-\frac{1}{2}[\frac{e^{j3\pi n}+e^{-j3\pi n}}{2}]+\frac{e^{j3\pi n}-e^{-3\pi n}}{j2} $


$ x[n]=-\frac{1}{4}e^{j3\pi n}-\frac{1}{4}e^{-j3\pi n}+\frac{1}{j2}e^{3\pi n}-\frac{1}{j2}e^{-j3\pi n} $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison