(New page: <math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>. And the equation for fourier series of a function is as follows: <math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</mat...) |
|||
Line 1: | Line 1: | ||
− | <math> | + | <math>x[n]=-0.5cos(3\pin)+sin(3\pin)\!</math>. |
− | + | <math>x[n]=-\frac{1}{2}[\frac{e^{j3\pin}+e^{-j3\pin}}{2}]+\frac{e^{j3\pin}-e^{-3\pin}}{j2}</math> | |
− | <math>x | + | <math>x[n]=-\frac{1}{4}e^{j3\pin}-\frac{1}{4}e^{-j3\pin}+\frac{1}{j2}e^{3\pin}-\frac{1}{j2}e^{-j3\pin}</math> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Revision as of 15:29, 26 September 2008
$ x[n]=-0.5cos(3\pin)+sin(3\pin)\! $.
$ x[n]=-\frac{1}{2}[\frac{e^{j3\pin}+e^{-j3\pin}}{2}]+\frac{e^{j3\pin}-e^{-3\pin}}{j2} $
$ x[n]=-\frac{1}{4}e^{j3\pin}-\frac{1}{4}e^{-j3\pin}+\frac{1}{j2}e^{3\pin}-\frac{1}{j2}e^{-j3\pin} $