(→CT Signal) |
(→CT Signal) |
||
Line 3: | Line 3: | ||
== CT Signal == | == CT Signal == | ||
− | :<math> x(t) = 1 + sin(w_0 t) + 3cos( | + | :<math> x(t) = 1 + sin(w_0 t) + 3cos(2w_0 t + {\pi \over 4}) </math><br><br> |
This is a signal with period <math>T = {2\pi \over w_0}</math><br><br> | This is a signal with period <math>T = {2\pi \over w_0}</math><br><br> | ||
− | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t} - e^{-j w_0 t}] + {3 \over 2}[e^{(j | + | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t} - e^{-j w_0 t}] + {3 \over 2}[e^{(j 2w_0 t + {\pi \over 4})}+e^{-(j 2w_0 t + {\pi \over 4})}]</math><br><br> |
− | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j | + | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j 2w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j 2w_0 t} e^{-j{\pi \over 4}}]</math><br><br> |
:<math>e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} </math><br> | :<math>e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} </math><br> | ||
:<math>e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} </math> | :<math>e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} </math> | ||
<br><br> | <br><br> | ||
− | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j | + | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j 2w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j 2w_0 t} e^{-j{\pi \over 4}}]</math><br><br> |
− | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) [e^{j | + | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) [e^{j 2w_0 t}]+ {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) [e^{-j 2w_0 t}]</math><br><br> |
Revision as of 15:23, 26 September 2008
Preview
This is only a preview; changes have not yet been saved! (????)
CT Signal
- $ x(t) = 1 + sin(w_0 t) + 3cos(2w_0 t + {\pi \over 4}) $
This is a signal with period $ T = {2\pi \over w_0} $
- $ x(t) = 1 + {1 \over 2j}[e^{j w_0 t} - e^{-j w_0 t}] + {3 \over 2}[e^{(j 2w_0 t + {\pi \over 4})}+e^{-(j 2w_0 t + {\pi \over 4})}] $
- $ x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j 2w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j 2w_0 t} e^{-j{\pi \over 4}}] $
- $ e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} $
- $ e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} $
- $ x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j 2w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j 2w_0 t} e^{-j{\pi \over 4}}] $
- $ x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2}({1 \over \sqrt{2}} + j{1 \over \sqrt{2}}) [e^{j 2w_0 t}]+ {3 \over 2}({1 \over \sqrt{2}} - j{1 \over \sqrt{2}}) [e^{-j 2w_0 t}] $