(→CT Signal) |
(→CT Signal) |
||
Line 6: | Line 6: | ||
This is a signal with period <math>T = {2\pi \over w_0}</math><br><br> | This is a signal with period <math>T = {2\pi \over w_0}</math><br><br> | ||
:<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t} - e^{-j w_0 t}] + {3 \over 2}[e^{(j w_0 t + {\pi \over 4})}+e^{-(j w_0 t + {\pi \over 4})}]</math><br><br> | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t} - e^{-j w_0 t}] + {3 \over 2}[e^{(j w_0 t + {\pi \over 4})}+e^{-(j w_0 t + {\pi \over 4})}]</math><br><br> | ||
+ | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j w_0 t} e^{-j{\pi \over 4}}]</math><br><br> | ||
+ | :<math>e^{-j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} </math><br> | ||
+ | :<math>e^{j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} </math> | ||
+ | <br><br> | ||
:<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j w_0 t} e^{-j{\pi \over 4}}]</math><br><br> | :<math> x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j w_0 t} e^{-j{\pi \over 4}}]</math><br><br> |
Revision as of 15:18, 26 September 2008
Preview
This is only a preview; changes have not yet been saved! (????)
CT Signal
- $ x(t) = 1 + sin(w_0 t) + 3cos(w_0 t + {\pi \over 4}) $
This is a signal with period $ T = {2\pi \over w_0} $
- $ x(t) = 1 + {1 \over 2j}[e^{j w_0 t} - e^{-j w_0 t}] + {3 \over 2}[e^{(j w_0 t + {\pi \over 4})}+e^{-(j w_0 t + {\pi \over 4})}] $
- $ x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j w_0 t} e^{-j{\pi \over 4}}] $
- $ e^{-j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} $
- $ e^{j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} $
- $ x(t) = 1 + {1 \over 2j}[e^{j w_0 t}] + ({-1 \over 2j})e^{-j w_0 t} + {3 \over 2} [e^{j w_0 t}e^ {j{\pi \over 4}}]+ {3 \over 2}[e^{-j w_0 t} e^{-j{\pi \over 4}}] $