Line 5: Line 5:
 
2.  <math>\sum_{k = 0}^{3}x[n] = (2 + j)</math>
 
2.  <math>\sum_{k = 0}^{3}x[n] = (2 + j)</math>
  
3.   
+
3.  <math>a_{1} = a{2}\,</math>
  
 
4.  for the given value of k, <math>e^{jk\frac{2\pi}{N}} = 1\,</math>, then that <math>a_{k} = \frac{1}{2}\,</math>  
 
4.  for the given value of k, <math>e^{jk\frac{2\pi}{N}} = 1\,</math>, then that <math>a_{k} = \frac{1}{2}\,</math>  
Line 16: Line 16:
  
 
<math>a_{0} = \frac{2 + j}{4}</math>
 
<math>a_{0} = \frac{2 + j}{4}</math>
 +
 +
<math>a_{1} = \frac{1}{2}</math>
  
 
<math>a_{2} = \frac{1}{2}</math>
 
<math>a_{2} = \frac{1}{2}</math>
 +
 +
<math>a_{3} = 0</math>
 +
 +
<math>x[n] = \frac{2 + j}{4} + \frac{1}{2}e^{j\frac{\pi}{2}}</math>

Revision as of 15:30, 26 September 2008

DT Signal:

1. Signal is periodic with N = 4

2. $ \sum_{k = 0}^{3}x[n] = (2 + j) $

3. $ a_{1} = a{2}\, $

4. for the given value of k, $ e^{jk\frac{2\pi}{N}} = 1\, $, then that $ a_{k} = \frac{1}{2}\, $

5. All other $ a_{k} = 0\, $


Solution

$ a_{0} = \frac{2 + j}{4} $

$ a_{1} = \frac{1}{2} $

$ a_{2} = \frac{1}{2} $

$ a_{3} = 0 $

$ x[n] = \frac{2 + j}{4} + \frac{1}{2}e^{j\frac{\pi}{2}} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal