Line 14: Line 14:
  
 
<math>a_{0} = \frac{2 + j}{4}</math>
 
<math>a_{0} = \frac{2 + j}{4}</math>
 +
 +
<math>a_{0} = </math>

Revision as of 15:21, 26 September 2008

DT Signal:

1. Signal is periodic with N = 4

2. $ \sum_{k = 0}^{3}x[n] = (2 + j) $

3. for the given value of k, $ e^{jk2\pi} = 1\, $, then that $ a_{k} = \frac{1}{2}\, $

4. All other $ a_{k} = 0\, $


Solution

$ a_{0} = \frac{2 + j}{4} $

$ a_{0} = $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett