(→DT signal & its Fourier Coefficients) |
(→DT signal & its Fourier Coefficients) |
||
Line 9: | Line 9: | ||
<math>\ x[n] = \frac{5}{2j} (e^{j (3\pi n)} e^{j\frac{\pi}{4}}-e^{-j (3\pi n)}e^{j\frac{\pi}{4}}) </math> | <math>\ x[n] = \frac{5}{2j} (e^{j (3\pi n)} e^{j\frac{\pi}{4}}-e^{-j (3\pi n)}e^{j\frac{\pi}{4}}) </math> | ||
− | + | <math>\ e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} </math><br> | |
− | + | <math>\ e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} </math> | |
+ | |||
+ | <math>\ x[n] = \frac{5}{2j} (e^{j (3\pi n)} () -e^{-j (3\pi n)} () ) </math> |
Revision as of 15:43, 26 September 2008
DT signal & its Fourier Coefficients
$ \ x[n] = 5sin(3 \pi n + \frac{\pi}{4}) $
Knowing its Fourier series is
$ \ x[n] = \frac{5}{2j} (e^{j (3\pi n + \frac{\pi}{4})}-e^{-j (3\pi n + \frac{\pi}{4})}) $
$ \ x[n] = \frac{5}{2j} (e^{j (3\pi n)} e^{j\frac{\pi}{4}}-e^{-j (3\pi n)}e^{j\frac{\pi}{4}}) $
$ \ e^{j {\pi \over 4}} = {1 \over \sqrt{2}} + j{1 \over \sqrt{2}} $
$ \ e^{-j{\pi \over 4}} = {1 \over \sqrt{2}} - j{1 \over \sqrt{2}} $
$ \ x[n] = \frac{5}{2j} (e^{j (3\pi n)} () -e^{-j (3\pi n)} () ) $