(A Periodic DT Signal)
(A Periodic DT Signal)
Line 13: Line 13:
 
<math>x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j({4\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j({4\pi \over N}n)}</math>
 
<math>x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j({4\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j({4\pi \over N}n)}</math>
 
<br><br>
 
<br><br>
<math>x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j2({2\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j2({2\pi \over N}n)}</math>
+
<math>x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j2({2\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j2({2\pi \over N}n)}</math><br><br><br><br><br>
  
 
<math> a_0 = 1</math><br><math> a_1 = {1 \over 2j} + {5 \over 2} </math><br><math> a_{-1} = -{1 \over 2j} + {5 \over 2}</math><br><math> a_2 = {7 \over 2}</math><br><math> a_{-2} = {7 \over 2}</math><br><br>
 
<math> a_0 = 1</math><br><math> a_1 = {1 \over 2j} + {5 \over 2} </math><br><math> a_{-1} = -{1 \over 2j} + {5 \over 2}</math><br><math> a_2 = {7 \over 2}</math><br><math> a_{-2} = {7 \over 2}</math><br><br>

Revision as of 14:44, 26 September 2008

A Periodic DT Signal


$ x[n] = 1 + sin({2\pi \over N})n + 5cos({2\pi \over N})n + 7sin({4\pi \over N}n - {\pi \over 2}) $

The signal above x[n] is periodic with period N.

$ x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}+e^{-j({2\pi \over N})n}] + {7 \over 2j}[e^{j({4\pi \over N}n-{\pi \over 2})}-e^{-j({4\pi \over N}n - {\pi \over 2})}] $

$ x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] $

$ x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j({4\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j({4\pi \over N}n)} $

$ x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j2({2\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j2({2\pi \over N}n)} $




$ a_0 = 1 $
$ a_1 = {1 \over 2j} + {5 \over 2} $
$ a_{-1} = -{1 \over 2j} + {5 \over 2} $
$ a_2 = {7 \over 2} $
$ a_{-2} = {7 \over 2} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva