(→A Periodic DT Signal) |
(→A Periodic DT Signal) |
||
Line 14: | Line 14: | ||
<math> x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] </math> | <math> x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] </math> | ||
<br><br> | <br><br> | ||
− | <math>x[n] = 1 + ({1 \over 2j} + ) + | + | <math>x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] |
Revision as of 14:27, 26 September 2008
A Periodic DT Signal
$ x[n] = 1 + sin({2\pi \over N})n + 5cos({2\pi \over N})n + 7sin({4\pi \over N}n - {\pi \over 2}) $
The signal above x[n] is periodic with period N.
$ x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {7 \over 2j}[e^{j({4\pi \over N}n-{\pi \over 2})}-e^{-j({4\pi \over N}n - {\pi \over 2})}] $
wrong ---> The Fourth term on the right hand goes away since $ e^{j{\pi \over 2}n} \text{ and } e^{-j{\pi \over 2}n} $ are zero.
$ x[n] = 1 + {1 \over 2j}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] + {5 \over 2}[e^{j({2\pi \over N})n}-e^{-j({2\pi \over N})n}] $
$ x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] $