Line 11: Line 11:
  
 
#2 also gives the equation <math> x[n] = \sum_{0}^{9} a_{k} e^{-jkn\pi /5 }</math>
 
#2 also gives the equation <math> x[n] = \sum_{0}^{9} a_{k} e^{-jkn\pi /5 }</math>
 +
 +
since a_{11} = 5 that means that a_1 also equals 5
  
 
<math>\ a_5 = \frac{1}{10} \sum_{0}^{9} x[n]e^{-j\pi n}</math>
 
<math>\ a_5 = \frac{1}{10} \sum_{0}^{9} x[n]e^{-j\pi n}</math>
Line 18: Line 20:
 
<math>\ a_5 = \frac{1}{10}</math>
 
<math>\ a_5 = \frac{1}{10}</math>
  
<math>\ x[n] = a_0 + a_1e^{j\pi/ 5(1)n} +a_2e^{j\pi/ 5(2)n}+a_3e^{j\pi/ 5(3)n}+a_4e^{j\pi/ 5(4)n}+\frac{1}{10}e^{j\pi/ 5(5)n}</math>
+
<math>\ x[n] = a_0 + 5e^{j\pi/ 5(1)n} +a_2e^{j\pi/ 5(2)n}+a_3e^{j\pi/ 5(3)n}+a_4e^{j\pi/ 5(4)n}+\frac{1}{10}e^{j\pi/ 5(5)n}</math>

Latest revision as of 14:12, 26 September 2008

1. x[n] is a real and even signal

2. x[n] has period N = 10 and Fourier coefficients $ \ a_k $

3. $ \ a_{11} = 5 $

4. $ \ \frac{1}{10} \sum_{n=0}^{9}|x[n]|^2 = 50 $


From #2 gives the period of N=10, from that can deduce that the frequency $ \ w = k\frac{2\pi}{10} $ and if assume k=1 then the frequency $ \ w=\frac{\pi}{5} $

  1. 2 also gives the equation $ x[n] = \sum_{0}^{9} a_{k} e^{-jkn\pi /5 } $

since a_{11} = 5 that means that a_1 also equals 5

$ \ a_5 = \frac{1}{10} \sum_{0}^{9} x[n]e^{-j\pi n} $

$ \ a_5 = \frac{1}{10} \sum_{0}^{9} x[n](-1)^n $

$ \ a_5 = \frac{1}{10} $

$ \ x[n] = a_0 + 5e^{j\pi/ 5(1)n} +a_2e^{j\pi/ 5(2)n}+a_3e^{j\pi/ 5(3)n}+a_4e^{j\pi/ 5(4)n}+\frac{1}{10}e^{j\pi/ 5(5)n} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett