(b) Computing the response to the system when x[n] is the input from Question 2)
Line 19: Line 19:
 
==b) Computing the response to the system when x[n] is the input from Question 2==
 
==b) Computing the response to the system when x[n] is the input from Question 2==
  
<big><math>x[n] = cos(5\pi n)</math></big>
+
<big><math>x[n] = cos(5\pi n) = e^{j\pi n}</math></big>

Revision as of 14:14, 26 September 2008

Defining the DT LTI system

$ x[n] \rightarrow system \rightarrow y[n] = 5x[n] $

a) Finding the unit impulse response h[n] and the system function F(z).

$ x[n] = \delta [n] \rightarrow system \rightarrow y[n]=5\delta [n] $

Therefore the unit impulse response, $ h[n] = 5\delta [n] $

For a DT LTI system,

$ Z^n \rightarrow system \rightarrow F(z)Z^n $

Output of the system, $ F(z)Z^n = h[n]*Z^n = \sum_{m=-\infty}^{\infty} h[m]Z^{n-m} = Z^n\sum_{-\infty}^{\infty}h[m]Z^{-m} $

Therefore, $ F(z) = \sum_{-\infty}^{\infty}h[m]Z^{-m} = \sum_{-\infty}^{\infty}5\delta [m] Z^{-m} $

b) Computing the response to the system when x[n] is the input from Question 2

$ x[n] = cos(5\pi n) = e^{j\pi n} $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach