(New page: ==Defining the DT LTI system== <math>x[n] \rightarrow system \rightarrow y[n] = 5x[n]</math>)
 
Line 2: Line 2:
  
 
<math>x[n] \rightarrow system \rightarrow y[n] = 5x[n]</math>
 
<math>x[n] \rightarrow system \rightarrow y[n] = 5x[n]</math>
 +
 +
==a) Finding the unit impulse response h[n] and the system function H(z).==
 +
 +
<math>x[n] = \delta [n] \rightarrow system \rightarrow y[n]=5\delta [n]</math>
 +
 +
Therefore the unit impulse response, <math>h[n] = 5\delta [n]</math>

Revision as of 13:39, 26 September 2008

Defining the DT LTI system

$ x[n] \rightarrow system \rightarrow y[n] = 5x[n] $

a) Finding the unit impulse response h[n] and the system function H(z).

$ x[n] = \delta [n] \rightarrow system \rightarrow y[n]=5\delta [n] $

Therefore the unit impulse response, $ h[n] = 5\delta [n] $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett