(New page: <math>\ y(t) = 4x(t-1)</math> <math>\ h(t) = 4d(t-1)</math> <math>\ H(s) = \int^{\infty}_{-\infty} h(t)e^{-st}dt</math> <math>\ H(s) = \int^{\infty}_{-\infty} 4d(t-1)e^{-st}dt</math> ...) |
|||
Line 1: | Line 1: | ||
+ | == get h(t), H(s), and H(jw) == | ||
+ | |||
<math>\ y(t) = 4x(t-1)</math> | <math>\ y(t) = 4x(t-1)</math> | ||
Line 10: | Line 12: | ||
<math>\ H(jw) = 4e^{-jw}</math> | <math>\ H(jw) = 4e^{-jw}</math> | ||
+ | |||
+ | == get the response of H(s) to signal proposed in previous question == | ||
<math> y(t) = \sum_{k = -\infty}^{\infty} a_k H(jkw) (sin(4\pi t) + sin(6\pi t)) \!</math> | <math> y(t) = \sum_{k = -\infty}^{\infty} a_k H(jkw) (sin(4\pi t) + sin(6\pi t)) \!</math> |
Revision as of 13:10, 26 September 2008
get h(t), H(s), and H(jw)
$ \ y(t) = 4x(t-1) $
$ \ h(t) = 4d(t-1) $
$ \ H(s) = \int^{\infty}_{-\infty} h(t)e^{-st}dt $
$ \ H(s) = \int^{\infty}_{-\infty} 4d(t-1)e^{-st}dt $
$ \ H(s) = 4e^{-s} $
$ \ H(jw) = 4e^{-jw} $
get the response of H(s) to signal proposed in previous question
$ y(t) = \sum_{k = -\infty}^{\infty} a_k H(jkw) (sin(4\pi t) + sin(6\pi t)) \! $