(New page: <math>\ y(t) = 4x(t-1)</math> <math>\ h(t) = 4d(t-1)</math> <math>\ H(s) = \int^{\infty}_{-\infty} h(t)e^{-st}dt</math> <math>\ H(s) = \int^{\infty}_{-\infty} 4d(t-1)e^{-st}dt</math> ...)
 
Line 1: Line 1:
 +
== get h(t), H(s), and H(jw) ==
 +
 
<math>\ y(t) =  4x(t-1)</math>
 
<math>\ y(t) =  4x(t-1)</math>
  
Line 10: Line 12:
  
 
<math>\ H(jw) = 4e^{-jw}</math>
 
<math>\ H(jw) = 4e^{-jw}</math>
 +
 +
== get the response of H(s) to signal proposed in previous question ==
  
 
<math> y(t) = \sum_{k = -\infty}^{\infty} a_k H(jkw) (sin(4\pi t) + sin(6\pi t)) \!</math>
 
<math> y(t) = \sum_{k = -\infty}^{\infty} a_k H(jkw) (sin(4\pi t) + sin(6\pi t)) \!</math>

Revision as of 13:10, 26 September 2008

get h(t), H(s), and H(jw)

$ \ y(t) = 4x(t-1) $

$ \ h(t) = 4d(t-1) $

$ \ H(s) = \int^{\infty}_{-\infty} h(t)e^{-st}dt $

$ \ H(s) = \int^{\infty}_{-\infty} 4d(t-1)e^{-st}dt $

$ \ H(s) = 4e^{-s} $

$ \ H(jw) = 4e^{-jw} $

get the response of H(s) to signal proposed in previous question

$ y(t) = \sum_{k = -\infty}^{\infty} a_k H(jkw) (sin(4\pi t) + sin(6\pi t)) \! $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett