Line 3: Line 3:
 
<math>
 
<math>
 
y(t) =
 
y(t) =
\ cos(x)
+
\ cos(t)
 
</math>
 
</math>
  
Line 9: Line 9:
  
 
<math>
 
<math>
\ cos(x) = \sum_{n=0}^\infty \left (-1 \right )^n \frac{b^{2n}}{ \left(2n \right )!}
+
\ cos(t) = \sum_{n=0}^\infty \left (-1 \right )^n \frac{t^{2n}}{ \left(2n \right )!}
 
</math>
 
</math>
  

Revision as of 12:24, 26 September 2008

The function y(t) in this example is the periodic continuous-time signal cos(x) such that

$ y(t) = \ cos(t) $

where cos(x) can be expressed by the Maclaurin series expansion

$ \ cos(t) = \sum_{n=0}^\infty \left (-1 \right )^n \frac{t^{2n}}{ \left(2n \right )!} $

where its Fourier series coefficients are described by the equation

$ \left ( \frac{1}{jk\omega_0} \right )a_k = \left ( \frac{1}{jk \left (2\pi/T \right)} \right )a_k $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang