Line 3: Line 3:
 
<math>
 
<math>
 
y(t) =
 
y(t) =
\int_{-N}^{N} cos(x)\, dx
+
\int_{-inf}^{N} cos(x)\, dx
 
</math>
 
</math>

Revision as of 11:49, 26 September 2008

The function y(t) in this example is equal to the integral of cos(x) such that

$ y(t) = \int_{-inf}^{N} cos(x)\, dx $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett