Line 1: | Line 1: | ||
− | <math>x(t)=10cos(4\pi n + 2\pi)\!</math> | + | <math>x(t)=10cos(4\pi n + 2\pi)+5sin(2\pi n + 4\pi)\!</math> |
− | In order to find the period of the signal below, we need to find | + | In order to find the period of the signal below, we need to find a value of K that will make N an integer. |
− | <math> | + | <math>N_1 = \frac{2\pi}{\omega_0} K \!</math> |
− | <math> | + | <math>N_1 = \frac{2\pi}{4\pi} K \!</math> |
− | <math> | + | <math>N_1 = 2K \!</math> |
− | <math> | + | <math>N_2 = \frac{2\pi}{\omega_0} K \!</math> |
− | + | <math>N_2 = \frac{2\pi}{2\pi} K \!</math> | |
− | <math> | + | <math>N_2 = K \!</math> |
+ | |||
+ | Since both numbers are integers before multiplying by K, we can just let K = 1. |
Revision as of 11:57, 26 September 2008
$ x(t)=10cos(4\pi n + 2\pi)+5sin(2\pi n + 4\pi)\! $
In order to find the period of the signal below, we need to find a value of K that will make N an integer.
$ N_1 = \frac{2\pi}{\omega_0} K \! $
$ N_1 = \frac{2\pi}{4\pi} K \! $
$ N_1 = 2K \! $
$ N_2 = \frac{2\pi}{\omega_0} K \! $
$ N_2 = \frac{2\pi}{2\pi} K \! $
$ N_2 = K \! $
Since both numbers are integers before multiplying by K, we can just let K = 1.