(Rewritten in e^{jw_0} Form)
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
==Periodic CT Signal==
 
==Periodic CT Signal==
 
<math>x(t) = \frac{4\pi}{3} + \frac{1}{2}sin(1000\pi t) - cos(1000\pi t) \ </math>
 
<math>x(t) = \frac{4\pi}{3} + \frac{1}{2}sin(1000\pi t) - cos(1000\pi t) \ </math>
Line 11: Line 21:
  
 
<math>w_0 = 1000\pi\ </math>
 
<math>w_0 = 1000\pi\ </math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:06, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Periodic CT Signal

$ x(t) = \frac{4\pi}{3} + \frac{1}{2}sin(1000\pi t) - cos(1000\pi t) \ $

Rewritten in $ e^{jw_0} $ Form

$ x(t) = \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t}) $

Fourier Series Coefficients

$ a_0 = \frac{4\pi}{3} $

$ a_1 = \frac{1}{1000} $

$ w_0 = 1000\pi\ $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin