Line 11: Line 11:
 
==Inspections==
 
==Inspections==
  
From first information, we can directly subtitute N into:
+
From the first information, we can directly subtitute N into:
  
 
<math>x[n]=\sum_{n=0}^{3}a_ke^{jk(2\pi/2)n}\,</math>
 
<math>x[n]=\sum_{n=0}^{3}a_ke^{jk(2\pi/2)n}\,</math>
Line 17: Line 17:
 
<math>x[n]=\sum_{n=0}^{3}a_ke^{jk\pi n}\,</math>
 
<math>x[n]=\sum_{n=0}^{3}a_ke^{jk\pi n}\,</math>
  
From third information, we can find <math>a_0\,</math>:
+
From the third information, we can find <math>a_0\,</math>:
  
 
<math>a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]=\frac{1}{4} 2 = \frac{1}{2}</math>
 
<math>a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]=\frac{1}{4} 2 = \frac{1}{2}</math>
 +
 +
From the fourth information, we can find <math>a_1\,</math>:
 +
 +
<math>a_0=\frac{1}{4}\sum_{n=0}^{3}(-1)^nx[n]
 +
 +
<math>a_0=\frac{1}{4} 2 = \frac{1}{2}</math>

Revision as of 10:02, 26 September 2008

Informations

1. $ N = 2\, $

2. $ a_k = 0\, $ for all |k|>1

3. $ \sum_{n=0}^{3}x[n]=2 $

4. $ \sum_{n=0}^{3}(-1)^nx[n]=5 $

Inspections

From the first information, we can directly subtitute N into:

$ x[n]=\sum_{n=0}^{3}a_ke^{jk(2\pi/2)n}\, $

$ x[n]=\sum_{n=0}^{3}a_ke^{jk\pi n}\, $

From the third information, we can find $ a_0\, $:

$ a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]=\frac{1}{4} 2 = \frac{1}{2} $

From the fourth information, we can find $ a_1\, $:

$ a_0=\frac{1}{4}\sum_{n=0}^{3}(-1)^nx[n] <math>a_0=\frac{1}{4} 2 = \frac{1}{2} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett