(New page: =Obtain the input impulse response h[n] and the system function H(z) of your system= Defining a DT LTI: <math>y[n] = x[n+5] + x[n-3]\,</math><br> So, we have the unit impulse response: <ma...)
 
Line 5: Line 5:
 
<math>h[n] = \delta[n-5] + \delta[n-3]\,</math>
 
<math>h[n] = \delta[n-5] + \delta[n-3]\,</math>
  
Then we find the frequency response:
+
Then we find the frequency response:<br><br>
 
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\,</math>
 
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\,</math>
  

Revision as of 07:41, 26 September 2008

Obtain the input impulse response h[n] and the system function H(z) of your system

Defining a DT LTI: $ y[n] = x[n+5] + x[n-3]\, $
So, we have the unit impulse response: $ h[n] = \delta[n-5] + \delta[n-3]\, $

Then we find the frequency response:

$ F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} + h[m-3]e^{jm\omega}\, $

$ F(z) = \sum^{\infty}_{m=-\infty} h[m+5]e^{jm\omega} \, $

Compute the response of your system to the signal you defined in Question 1 using H(z) and the Fourier series coefficients of your signal

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison