(Input Signal)
Line 14: Line 14:
  
 
<math>x(t)=cos(3*pi*t)cos(6*pi*t)\!</math>
 
<math>x(t)=cos(3*pi*t)cos(6*pi*t)\!</math>
 
+
<br>
==Ao==
+
<br>
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt</math>
+
<math>x(t)=[1/2*e^{j*2*pi*t}+1/2*e^{-j*2*pi*t}]*[1/2*e^{j*4*pi*t}+1/2*e^{-j*4*pi*t}]</math>
==A1==
+
<br>
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{1}dt</math>
+
<math>     =1/4*e^{j6pit}+1/4*e^{-j2pit}+1/4*e^{j2pit}+1/4*e^{-j6pit}</math>
==A2==
+
<br>
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{2}dt</math>
+
<br>
==A-1==
+
The fundamental frequency is 2*pi
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-1}dt</math>
+
<br>
==A-2==
+
a3=1/4
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-2}dt</math>
+
a-1=1/4
 +
a1=1/4
 +
a3=1/4
 +
all other ak=0

Revision as of 08:56, 26 September 2008

Equations

Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $

From Phil Cannon

Input Signal

$ x(t)=cos(3*pi*t)cos(6*pi*t)\! $

$ x(t)=[1/2*e^{j*2*pi*t}+1/2*e^{-j*2*pi*t}]*[1/2*e^{j*4*pi*t}+1/2*e^{-j*4*pi*t}] $
$ =1/4*e^{j6pit}+1/4*e^{-j2pit}+1/4*e^{j2pit}+1/4*e^{-j6pit} $

The fundamental frequency is 2*pi
a3=1/4 a-1=1/4 a1=1/4 a3=1/4 all other ak=0

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison