Line 2: Line 2:
 
A very simple system:
 
A very simple system:
 
<br>
 
<br>
<math>y(t)=x(t)\,</math>
+
<math>y(t)=x(t)\,</math>  and  <math>x(t)=\delta(t)</math>
 
<br><br>
 
<br><br>
 
We can get <math>h(t)=\delta(t)\,</math>
 
We can get <math>h(t)=\delta(t)\,</math>
 
<br>
 
<br>
<math>y(t) = \int^{\infty}_{-\infty} h(t) * x(t) dt\,</math><br>
+
<math>y(t) = h(t) * x(t) dt\,</math><br>
 +
<math>y(t) = \int^{\infty}_{-\infty} h(\tau) x(t-\tau) d\tau\,</math><br>
 +
 
 
==Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal==
 
==Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal==

Revision as of 06:59, 26 September 2008

Obtain the input impulse response h(t) and the system function H(s) of your system

A very simple system:
$ y(t)=x(t)\, $ and $ x(t)=\delta(t) $

We can get $ h(t)=\delta(t)\, $
$ y(t) = h(t) * x(t) dt\, $
$ y(t) = \int^{\infty}_{-\infty} h(\tau) x(t-\tau) d\tau\, $

Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood