(New page: <math>x(t) = \sin(4\pi t) + \sin(6\pi t)</math></BR> <math>x(t) = \frac{e^{j4\pi t} - e^{-j4\pi t}}{2}} \frac{e^{j6\pi t} - e^{-j6\pi t}}{2}}\,</math>)
 
Line 1: Line 1:
<math>x(t) = \sin(4\pi t) + \sin(6\pi t)</math></BR>
+
<math>\ x(t) = \sin(4\pi t) + \sin(6\pi t)</math>
<math>x(t) = \frac{e^{j4\pi t} - e^{-j4\pi t}}{2}} \frac{e^{j6\pi t} - e^{-j6\pi t}}{2}}\,</math>
+
 
 +
 
 +
<math>\ x(t) = (\frac{e^{j4\pi t} - e^{-j4\pi t}}{2}) (\frac{e^{j6\pi t} - e^{-j6\pi t}}{2j})</math>
 +
 
 +
 
 +
<math>\ x(t) = \frac{-1}{4}(e^{j10\pi t} - e{-j2\pi t} - e^{j2\pi t} + e^{-j10\pi t})</math>
 +
 
 +
 
 +
<math>\ x(t) = \frac{-1}{4}(e^{5(j2\pi t)} - e^{-1(j2\pi t)} - e^{1(j2\pi t)} + e^{-5(j2\pi t)}</math>
 +
 
 +
 
 +
<math>a_{5} = \frac{-1}{4}, a_{-1} = \frac{1}{4}, a_{1} = \frac{1}{4}, a_{-5} = \frac{-1}{4}</math>

Revision as of 06:17, 26 September 2008

$ \ x(t) = \sin(4\pi t) + \sin(6\pi t) $


$ \ x(t) = (\frac{e^{j4\pi t} - e^{-j4\pi t}}{2}) (\frac{e^{j6\pi t} - e^{-j6\pi t}}{2j}) $


$ \ x(t) = \frac{-1}{4}(e^{j10\pi t} - e{-j2\pi t} - e^{j2\pi t} + e^{-j10\pi t}) $


$ \ x(t) = \frac{-1}{4}(e^{5(j2\pi t)} - e^{-1(j2\pi t)} - e^{1(j2\pi t)} + e^{-5(j2\pi t)} $


$ a_{5} = \frac{-1}{4}, a_{-1} = \frac{1}{4}, a_{1} = \frac{1}{4}, a_{-5} = \frac{-1}{4} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn