(New page: For a CT signal x(t) <math>= \sum_{k=-\infty}^\infty a_k e^{jk\omega t} </math> Where x(t) <math>= 3 + 2cos(4\pi t) = 3 + (e^{j4\pi t} + e^{-j4\pi t} )</math> <math>\omega = 4\pi</mat...) |
|||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier series]] | ||
+ | [[Category:signals and systems]] | ||
+ | |||
+ | == Example of Computation of Fourier series of a CT SIGNAL == | ||
+ | A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]] | ||
+ | ---- | ||
+ | |||
For a CT signal | For a CT signal | ||
Line 20: | Line 30: | ||
<math>a_{-4} = 1</math> | <math>a_{-4} = 1</math> | ||
+ | |||
+ | ---- | ||
+ | [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]] |
Latest revision as of 10:01, 16 September 2013
Example of Computation of Fourier series of a CT SIGNAL
A practice problem on "Signals and Systems"
For a CT signal
x(t) $ = \sum_{k=-\infty}^\infty a_k e^{jk\omega t} $
Where
x(t) $ = 3 + 2cos(4\pi t) = 3 + (e^{j4\pi t} + e^{-j4\pi t} ) $
$ \omega = 4\pi $
A signal $ e^{jk\omega t} $ is periodic if and only if $ \left (\frac{\omega}{2\pi} \right) $ is a rational number
$ \left ( \frac{4\pi}{2\pi} \right ) = \left ( \frac{2}{1} \right ) $
2 is a rational number!
$ a_o = 3 $
$ a_4 = 1 $
$ a_{-4} = 1 $