(Unit Impulse)
(Unit Impulse)
Line 3: Line 3:
  
 
<math> h(t) = u(t-1) \,</math><br>
 
<math> h(t) = u(t-1) \,</math><br>
 +
 
<math> H(s) = \int^{\infty}_{-\infty} u(t-1)e^{-jw_0 t} dt\,</math><br>
 
<math> H(s) = \int^{\infty}_{-\infty} u(t-1)e^{-jw_0 t} dt\,</math><br>
 +
 
<math> H(s) = \int^{\infty}_{1}e^{-jw_0 t} dt\,</math><br>
 
<math> H(s) = \int^{\infty}_{1}e^{-jw_0 t} dt\,</math><br>
<math> H(s) = \frac{1}{jw_0}
+
 
 +
<math> H(s) = \frac{1}{jw_0}<br>
 +
 
 +
 
 +
== Repsonse of the CT system  ==
 +
 
 +
<math> x(t) = cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\,</math><br>
 +
 
 +
<math> y(t) = H(s)x(t)\,</math><br>
 +
 
 +
<math>

Revision as of 17:41, 25 September 2008

Unit Impulse

$ h(t) = u(t-1) \, $

$ H(s) = \int^{\infty}_{-\infty} u(t-1)e^{-jw_0 t} dt\, $

$ H(s) = \int^{\infty}_{1}e^{-jw_0 t} dt\, $

$ H(s) = \frac{1}{jw_0}<br> == Repsonse of the CT system == <math> x(t) = cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\, $

$ y(t) = H(s)x(t)\, $


Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett