Line 1: | Line 1: | ||
− | Given the following LTI system | + | Given the following LTI DT system |
− | <math>\,s[t]= | + | <math>\,s[t]=x[t]+x[t-1]\,</math> |
Line 11: | Line 11: | ||
The unit impulse response is simply (plug a <math>\,\delta[n]\,</math> into the system) | The unit impulse response is simply (plug a <math>\,\delta[n]\,</math> into the system) | ||
− | <math>\,h[n]= | + | <math>\,h[n]=\delta[n]+\delta[n-1]\,</math> |
+ | |||
+ | |||
+ | The system function can be found using the following formula (for LTI systems) | ||
+ | |||
+ | <math>\,H(z)=\sum_{m=-\infty}^{\infty}h[m]z^{-m}\,</math> | ||
== Part B == | == Part B == |
Revision as of 17:13, 25 September 2008
Given the following LTI DT system
$ \,s[t]=x[t]+x[t-1]\, $
Part A
Find the system's unit impulse response $ \,h[n]\, $ and system function $ \,H(z)\, $.
The unit impulse response is simply (plug a $ \,\delta[n]\, $ into the system)
$ \,h[n]=\delta[n]+\delta[n-1]\, $
The system function can be found using the following formula (for LTI systems)
$ \,H(z)=\sum_{m=-\infty}^{\infty}h[m]z^{-m}\, $