(New page: == CT Fourier Series == <math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_o t}</math>)
 
(CT Fourier Series)
Line 2: Line 2:
  
 
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_o t}</math>
 
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_o t}</math>
 +
 +
== Example ==
 +
 +
<math>x(t) = 1 + sin(8\pi t) + 2cos(8\pi t) + cos(16\pi t + \frac{\pi}{4})</math>
 +
 +
<font size ="3">The fundamental frequency is <math>8\pi</math>.</font>

Revision as of 15:43, 25 September 2008

CT Fourier Series

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_o t} $

Example

$ x(t) = 1 + sin(8\pi t) + 2cos(8\pi t) + cos(16\pi t + \frac{\pi}{4}) $

The fundamental frequency is $ 8\pi $.

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch