Line 1: Line 1:
 
Given the following periodic DT signal
 
Given the following periodic DT signal
  
<math>\,x(t)=\sum_{k=-\infty}^{\infty}\delta(n-5k) + \pi\delta(n-1-5k) - 3\delta(n-2-5k) + \sqrt[e]{\frac{\pi^j}{\ln(j)}}\delta(n-3-5k)\,</math>
+
<math>\,x(t)=\sum_{k=-\infty}^{\infty}\delta(n-4k) + \pi\delta(n-1-4k) - 3\delta(n-2-4k) + \sqrt[e]{\frac{\pi^j}{\ln(j)}}\delta(n-3-4k)\,</math>
 +
 
 +
which is an infinite sum of shifted copies of a non-periodic signal, compute its Fourier series coefficients.
 +
 
 +
== Answer ==
 +
 
 +
By inspection

Revision as of 13:12, 25 September 2008

Given the following periodic DT signal

$ \,x(t)=\sum_{k=-\infty}^{\infty}\delta(n-4k) + \pi\delta(n-1-4k) - 3\delta(n-2-4k) + \sqrt[e]{\frac{\pi^j}{\ln(j)}}\delta(n-3-4k)\, $

which is an infinite sum of shifted copies of a non-periodic signal, compute its Fourier series coefficients.

Answer

By inspection

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal