Line 29: Line 29:
 
<math>a_3 = \frac{1}{6}\sum_{n=0}^{5}x[n] e^{-3j\frac{\pi}{3}n} = \frac{1}{6}\sum_{n=0}^{5}x[n] e^{-j\pi n}\,</math>
 
<math>a_3 = \frac{1}{6}\sum_{n=0}^{5}x[n] e^{-3j\frac{\pi}{3}n} = \frac{1}{6}\sum_{n=0}^{5}x[n] e^{-j\pi n}\,</math>
  
Using the property that <math>e^{-j\pi n} = (e^{-j\pi})^{n}
+
Using the property that <math>e^{-j\pi n} = (e^{-j\pi})^{n} = (-1)^{n} \,</math>

Revision as of 12:36, 25 September 2008

Guess the Periodic Signal

A certain periodic signal has the following properties:

1. N = 6

2. $ \sum_{n=0}^{5}x[n] = 4 $

3. $ \sum_{n=1}^{6}(-1)^nx[n] = 2 $

4. $ a_k = a_{k+3}\, $


Answer

From 1. we know that $ x[n] = \sum_{n=0}^{5}a_k e^{jk\frac{\pi}{3}n}\, $

Using 2., it is apparent that this is the formula for $ a_k\, $. Specifically, for $ a_0\, $, since the only thing under the sum is $ x[n]\, $. So,

$ \frac{1}{6}\sum_{n=0}^{5}x[n] = 4\, $, and


$ = \frac{4}{6} = \frac{2}{3} = a_0\, $

Now that we know $ a_0\, $, we know that $ x[n] = \frac{2}{3} + \sum_{n=1}^{5}a_k e^{jk\frac{\pi}{3}n}\, $


Since $ \omega_0 = \frac{\pi}{3}\, $, let's try and find $ a_3\, $,

$ a_3 = \frac{1}{6}\sum_{n=0}^{5}x[n] e^{-3j\frac{\pi}{3}n} = \frac{1}{6}\sum_{n=0}^{5}x[n] e^{-j\pi n}\, $

Using the property that $ e^{-j\pi n} = (e^{-j\pi})^{n} = (-1)^{n} \, $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch