Line 22: Line 22:
  
 
<math>F(z) = 1 + e^{-j\omega} \,</math>
 
<math>F(z) = 1 + e^{-j\omega} \,</math>
 +
 +
 +
== Compute the Response of My Signal from Question 2 ==

Revision as of 11:30, 25 September 2008

Define a DT LTI system

$ y[n] = x[n+1] + x[n]\, $


Obtain the Unit Impulse Response h[n]

By definition, to obtain the unit impulse response from a system defined by $ y[n] = x[n]\, $, simply replace the $ x[n]\, $ by $ \delta[n]\, $.


$ h[n] = \delta[n+1] + \delta[n]\, $


Obtain the System Function $ F(z)\, $ of the System

$ F(z) = \sum^{\infty}_{m=-\infty} h[m]e^{jm\omega} \, $

$ F(z) = \sum^{\infty}_{m=-\infty} (\delta[m+1] + \delta[m])e^{jm\omega} \, $

$ F(z) = \sum^{\infty}_{m=-\infty} \delta[m+1]e^{jm\omega} + \delta[m]e^{jm\omega} \, $

Since the delta function is only valid when its input is zero,

$ F(z) = e^{-j\omega} + e^{0j\omega} \, $

$ F(z) = 1 + e^{-j\omega} \, $


Compute the Response of My Signal from Question 2

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett