Line 1: | Line 1: | ||
== Define a DT LTI system == | == Define a DT LTI system == | ||
<math>y[n] = x[n+1] + x[n]\,</math> | <math>y[n] = x[n+1] + x[n]\,</math> | ||
+ | |||
== Obtain the Unit Impulse Response h[n] == | == Obtain the Unit Impulse Response h[n] == | ||
Line 7: | Line 8: | ||
<math>h[n] = \delta[n+1] + \delta[n]\,</math> | <math>h[n] = \delta[n+1] + \delta[n]\,</math> | ||
+ | |||
== Obtain the System Function <math>F(z)\,</math> of the System == | == Obtain the System Function <math>F(z)\,</math> of the System == | ||
+ | <math>F(z) = \sum^{\infty}_{m=\infty} h[n] * x[n] dn\,</math> where <math>x[n] = e^{jwn} \,</math> |
Revision as of 11:21, 25 September 2008
Define a DT LTI system
$ y[n] = x[n+1] + x[n]\, $
Obtain the Unit Impulse Response h[n]
By definition, to obtain the unit impulse response from a system defined by $ y[n] = x[n]\, $, simply replace the $ x[n]\, $ by $ \delta[n]\, $.
$ h[n] = \delta[n+1] + \delta[n]\, $
Obtain the System Function $ F(z)\, $ of the System
$ F(z) = \sum^{\infty}_{m=\infty} h[n] * x[n] dn\, $ where $ x[n] = e^{jwn} \, $