(→RESPONSE OF SYSTEM TO SIGNAL DEFINED IN QUESTION 1) |
(→RESPONSE OF SYSTEM TO SIGNAL DEFINED IN QUESTION 1) |
||
Line 41: | Line 41: | ||
− | <math>f(t) = (3+j)\frac{e^{2jt}}{2}[\frac{7}{3} + \frac{9e^{- | + | <math>f(t) = (3+j)\frac{e^{2jt}}{2}[\frac{7}{3} + \frac{9e^{-16j}}{3}] + (3+j)\frac{e^{-2jt}}{2}[\frac{7}{3} + \frac{9e^{16j}}{3}] + (10+j)\frac{e^{7jt}}{2j}[\frac{7}{3} + \frac{9e^{-56j}}{3}] - (10+j)\frac{e^{-7jt}}{2j}[\frac{7}{3} + \frac{9e^{56jw}}{3}]\!</math> |
<br> | <br> | ||
UNDER CONSTRUCTION | UNDER CONSTRUCTION |
Revision as of 11:46, 25 September 2008
Contents
CT LTI SYSTEM
I chose the following continusous-time linear time invariant system:
$ f(t) = \frac{7x(t)}{3} + \frac{9x(t+8)}{2}\! $
UNIT IMPULSE RESPONSE OF SYSTEM
To find the unit impulse response of the system, we set $ x(t) = \delta(t)\! $. Then we obtain the following unit impulse response:
$ h(t) = \frac{7\delta(t)}{3} + \frac{9\delta(t+8)}{2}\! $
THE SYSTEM FUNCTION
In order to compute the system function H(s), we can simply take the laplace transform of the unit impulse response of the system. When we take the laplace transform, we find that $ H(s) = \frac{7}{3} + \frac{9e^{-8jw}}{3}\! $
RESPONSE OF SYSTEM TO SIGNAL DEFINED IN QUESTION 1
Signal used in question 1:
$ f(t) = (3+j)cos(2t) + (10+j)sin(7t)\! $
From question 1, we also know that:
$ f(t) = (3+j)\frac{e^{2jt}}{2} + (3+j)\frac{e^{-2jt}}{2} + (10+j)\frac{e^{7jt}}{2j} - (10+j)\frac{e^{-7jt}}{2j}\! $
Now, all we have to do is multiply each term of the input signal f(t) by the system function H(s). By doing so, we obtain the following:
\frac{7}{3} + \frac{9e^{-8jw}}{3}\!</math>
$ f(t) = (3+j)\frac{e^{2jt}}{2}[\frac{7}{3} + \frac{9e^{-16j}}{3}] + (3+j)\frac{e^{-2jt}}{2}[\frac{7}{3} + \frac{9e^{16j}}{3}] + (10+j)\frac{e^{7jt}}{2j}[\frac{7}{3} + \frac{9e^{-56j}}{3}] - (10+j)\frac{e^{-7jt}}{2j}[\frac{7}{3} + \frac{9e^{56jw}}{3}]\! $
UNDER CONSTRUCTION